
Information Processing Letters 180 (2023) 106333

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Order-preserving pattern matching with scaling

Youngho Kim a, Munseong Kang b, Joong Chae Na c,∗, Jeong Seop Sim a,∗
a Department of Computer Engineering, Inha University, Incheon 22212, South Korea
b Samsung Electronics, Suwon 16677, South Korea
c Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2021
Received in revised form 3 April 2022
Accepted 2 October 2022
Available online 5 October 2022
Communicated by Elena Grigorescu

Keywords:
Analysis of algorithms
String matching
Approximate string matching
Order-preserving pattern matching

Given a text T and a pattern P , the order-preserving pattern matching (OPPM for short)
problem is to find all substrings of T which have the same relative orders as P . Recently,
approximate OPPM that allows errors have been studied such as OPPM with k-mismatches.
In this paper we define the OPPM with scaling which is a novel criteria for approximate
OPPM by considering the relative orders of cusps and the scale of lengths of strings
between them. Also we present an algorithm to solve the OPPM problem with scaling
in O (n + m log m) time, which is the same time bound as the best known exact OPPM
algorithm.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The order-preserving pattern matching (OPPM for short)
compares the relative orders of characters instead of their
exact values. When two strings X and Y of the same
length have the same relative orders, they are called order-
isomorphic. Given a text T of length n and a pattern P of
length m, the OPPM problem is to find all substrings of
T which are order-isomorphic to P . For example, when
T = (4, 3, 8, 1, 2) and P = (4, 6, 1) are given, the order of
individual characters in the substring T [1..3] = (3, 8, 1) of
T is (2, 3, 1), which is the same as the order of characters
in P . The OPPM problem can be solved in O (n + m log m)

time for general alphabets and in O (n +m) time for linear-
time sortable alphabets [1–3]. Fast algorithms on average
have been presented in [4,5]. Also, the order-preserving
suffix tree has been proposed in [6].

* Corresponding authors.
E-mail addresses: yhkim85@inha.ac.kr (Y. Kim),

kmsung0102@gmail.com (M. Kang), jcna@sejong.ac.kr (J.C. Na),
jssim@inha.ac.kr (J.S. Sim).
https://doi.org/10.1016/j.ipl.2022.106333
0020-0190/© 2022 Elsevier B.V. All rights reserved.
Recently, approximate OPPM problems that allow er-
rors in matching have been studied. Gawrychowski and
Uznański [7] defined the OPPM problem with k-mismatches
and presented an O (n(log log m + k log log k))-time algo-
rithm. Chhabra et al. [8] presented an O (nm(�m/w� +
log m))-time algorithm and an O (n(�m/w� log log w +
m logm))-time algorithm for the OPPM problem with k-
mismatches, where w is the computer word size.

In classical pattern matching, scaling approximation of
strings has been studied. Given a text T and a pattern P ,
the pattern matching problem with scaling is to find all the
positions where scaled P occurs in T [9]. For example,
given T = aaabbbbcccd and P = abbc, T [1..8] = aabbbbcc
matches with P scaled to 2. Amir et al. [9] proposed al-
gorithms to solve one-dimensional and two-dimensional
pattern matching problems with scaling in linear time for a
pattern scaled by natural numbers. For the pattern match-
ing problem scaled by real numbers, an O (n)-time algo-
rithm using round down was presented in [10] and an
O (n log m + m3/2

√
n log m)-time algorithm using round off

was presented in [11]. For the two dimensional pattern
matching problem scaled by real numbers, an O (n2m)-

https://doi.org/10.1016/j.ipl.2022.106333
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2022.106333&domain=pdf
mailto:yhkim85@inha.ac.kr
mailto:kmsung0102@gmail.com
mailto:jcna@sejong.ac.kr
mailto:jssim@inha.ac.kr
https://doi.org/10.1016/j.ipl.2022.106333

Y. Kim, M. Kang, J.C. Na et al. Information Processing Letters 180 (2023) 106333
Table 1
Location tables for X = (33, 24, 43, 30, 93, 28, 13, 81, 58).

i 0 1 2 3 4 5 6 7 8

X[i] 33 24 43 30 93 28 13 81 58
LMaxX [i] −1 −1 0 1 2 1 −1 2 2
LMinX [i] −1 0 −1 0 −1 3 1 4 7

time algorithm using round off was presented in [12].
However, no study has been conducted yet for OPPM con-
sidering scaled patterns.

In this paper we first propose order-preserving pattern
matching with scaling for natural numbers which is a novel
criteria for approximate order-preserving pattern match-
ing. Our contributions are as follows.

• We define the scaled order-isomorphism of two strings
for the first time. In classical pattern matching, the
scaling of a string is defined by duplicating each char-
acter by the scaled size. However, it is not straight-
forward to define the scaling of a string in OPPM for
the following reasons. First, simply duplicating each
character is not natural in order relations of a string.
Second, if we add new characters between the two
original characters, the ranks of some characters may
change because of the added characters.

• We present an efficient algorithm for the OPPM prob-
lem with scaling. Our algorithm runs in O (n +m log m)

time, which is the same time bound as the best known
exact OPPM algorithm.

This paper is organized as follows. In Section 2, we give
some basic terms and related works. In Section 3, we de-
fine the scaled order-isomorphism and the OPPM problem
with scaling. We present an algorithm for the OPPM prob-
lem with scaling in Section 4 and we conclude in Section 5.

2. Preliminaries

Let � denote the set of characters where two charac-
ters can be compared in constant time. For a string S , let
|S| denote its length and S[i] denote the ith (0 ≤ i < |S|)
character of S . The substring S[i] · · · S[j] (0 ≤ i, j < |S|) is
denoted by S[i.. j], and S[i.. j] is an empty string when
i > j. The concatenation of two strings X and Y is denoted
by X ◦ Y . For convenience, we assume that characters in a
string are all distinct as in [2].

We formally define the order-isomorphism and the
nearest neighbor representation. If two strings X and Y of
length m satisfy X[i] < X[j] ⇔ Y [i] < Y [j] (0 ≤ i, j < m),
X and Y are order-isomorphic, which is denoted by X ≈ Y .
The order-isomorphism can be efficiently determined us-
ing the nearest neighbor representation [5,1–3]. The near-
est neighbor representation of X is defined using the loca-
tion tables LMaxX and LMinX , as follows.

LMaxX [i] =
⎧⎨
⎩

j if X[j] = max{X[k] : X[k] < X[i],
0 ≤ k ≤ i − 1}

−1 if there is no such j
2

LMinX [i] =
⎧⎨
⎩

j if X[j] = min{X[k] : X[k] > X[i],
0 ≤ k ≤ i − 1}

−1 if there is no such j

That is, LMaxX [i] stores the index j of the largest among
the characters smaller than X[i] in X[0..i −1], and LMinX [i]
stores the index j of the smallest among the characters
larger than X[i] in X[0..i − 1]. Table 1 shows LMaxX and
LMinX for X = (33, 24, 43, 30, 93, 28, 13, 81, 58). LMaxX

and LMinX can be computed in O (m logm) time using a
sort algorithm or an order-statistic tree. When the location
tables for X are given, the order-isomorphism of X and Y
can be determined in O (m) time by checking the following
inequality for every Y [i] (0 ≤ i < m) [2,3]:

Y [LMaxX [i]] < Y [i] < Y [LMinX [i]]. (1)

The following lemma and corollary show some proper-
ties on determining the order-isomorphism of two strings.

Lemma 1. For two strings X and Y of length m, let X ′ and Y ′
be the strings obtained from X and Y , respectively, by the same
permutation. Then X ≈ Y ⇔ X ′ ≈ Y ′ .

Proof. It is obvious by the definition of the order-isomor-
phism. �

Then, we can get the following corollary from Lemma 1.

Corollary 2. For two strings X and Y of length m, X[1..m −1] ◦
X[0] ≈ Y [1..m − 1] ◦ Y [0] ⇔ X ≈ Y .

By Corollary 2 we can determine the order isomor-
phism of X and Y using the location tables of X[1..m −
1] ◦ X[0] instead of X .

3. Scaled order-isomorphism

We first introduce some terminologies. For a string X
of length �, X[i] (1 ≤ i ≤ � − 2) is called a cusp if ei-
ther (X[i − 1] < X[i]) ∧ (X[i] > X[i + 1]) or (X[i − 1] >
X[i]) ∧ (X[i] < X[i + 1]). For simplicity of description, we
regard the characters X[0] and X[� − 1] as cusps. When
X = (1, 10, 6, 2, 7) in Fig. 1, cusps are 1, 10, 2, and 7. In
addition, the interval between adjacent cusps is called a
run whose length is called a run-length. For example, X
consists of three runs whose lengths are 1, 2, and 1, re-
spectively. We define the cusp string of X , denoted by XC ,
as the concatenation of all the cusps of X in order. Also,
we define the run-length string of X , denoted by X R , as the
sequence of all the run-lengths of X in order. That is, for
X = (1, 10, 6, 2, 7), XC = (1, 10, 2, 7) and X R = (1, 2, 1).

Definition 1. Two strings X and Y of the same length are
cusped order-isomorphic if XC ≈ Y C and X R = Y R .

Observation 1.
∑|X R |−1

i=0 X R [i] = |X | − 1.

For example, X and Y1 in Fig. 1 are cusped order-
isomorphic. Note that we ignore X[2] and Y1[2] because
they are not cusps.

Y. Kim, M. Kang, J.C. Na et al. Information Processing Letters 180 (2023) 106333

Fig. 1. X R , XC , Y R
1 , Y C

1 , Y R
2 , Y C

2 , Y R
3 , Y C

3 , Y R
4 , Y C

4 when the strings X = (1, 10, 6, 2, 7), Y1 = (3, 9, 8, 4, 6), Y2 = (2, 5, 10, 9, 6, 4, 3, 5, 7), Y3 =
(1, 5, 10, 8, 6, 3, 2, 4, 11), and Y4 = (1, 5, 10, 8, 6, 2, 4, 7).
Now we give an intuition on the scaled order-isomor-
phism. We mainly focus on cusps ignoring the other char-
acters, more specifically, the relative orders of cusps and
the run-lengths between them. For example, X in Fig. 1 is
scaled order-isomorphic to Y1. The cusps of X and those
of Y1 are order-isomorphic and the run-lengths of the two
strings are the same. The string X in Fig. 1 is also scaled
order-isomorphic to Y2. The cusps of X and those of Y2
are order-isomorphic, and each run-length of Y2 is twice
the corresponding run-length of X . Meanwhile, X is scaled
order-isomorphic to neither Y3 nor Y4. The cusps of Y3 are
not order-isomorphic to those of X , and the ratios of the
run-lengths of Y4 to the corresponding run-lengths of X
are not constant.

The formal definition of the scaled order-isomorphism
is as follows.

Definition 2. Given two strings X of length m and Y of
length n (n ≥ m), if the following conditions are satis-
fied for a positive integer k ≤ � n−1

m−1
, X is k-scaled order-

isomorphic to Y , denoted by X ∼=k Y .
Condition 1:

∣∣X R
∣∣ = ∣∣Y R

∣∣ and k × X R [i] = Y R [i] for all
0 ≤ i <

∣∣X R
∣∣. (By Observation 1, n = k(m − 1) + 1.)

Condition 2: XC ≈ Y C .

For example, X ∼=1 Y1 and X ∼=2 Y2 in Fig. 1. Mean-
while, X is not scaled order-isomorphic to Y3 since Con-
dition 2 is not satisfied (XC �≈ Y C

3). Also, X is not scaled
order-isomorphic to Y4 since Condition 1 is not satisfied
(X R = (1, 2, 1) and Y R

4 = (2, 3, 2)).

Problem 1. The order-preserving pattern matching (OPPM)
problem with scaling.
3

Input: Two strings T of length n and P of length m
(n ≥ m).
Output: Every position i in T such that P ∼=k T [i..i +k(m −
1)] (0 ≤ i ≤ n − m) with some integer k (1 ≤ k ≤ � n−1

m−1
).

4. Algorithm for the OPPM problem with scaling

In this section we give an algorithm to solve the OPPM
problem with scaling in O (n + m log m) time. Let

∣∣T R
∣∣ = n′

and
∣∣P R

∣∣ = m′ . Then,
∣∣T C

∣∣ = n′ + 1 and
∣∣P C

∣∣ = m′ + 1. Note
that the j-th run in T (0 ≤ j ≤ n′ −1) starts with the char-
acter T C [j]. Also, T C [j] = T [j′] where j′ = ∑ j−1

q=0 T R [q].
Since the cases when m′ ≤ 3 are trivial, we assume that
m′ ≥ 4.

We define the quotient strings of P and T . The quotient
string P Q of P is the string of length m′ − 1 indicating the
ratios between adjacent run-lengths of P , i.e., the ratios
between adjacent characters in P R as follows:

P Q =
(

P R [0]
P R [1] ,

P R [1]
P R [2] , . . . ,

P R [m′ − 2]
P R [m′ − 1]

)

The quotient string of T is defined similarly. Note that if
a string is scaled by some integer k (k ≥ 1), the ratios be-
tween adjacent run-lengths of the string are conserved re-
gardless of k. For instance, assume X ∼=2 Y for two strings
X and Y such that X R = (1, 2, 1, 2) and Y R = (2, 4, 2, 4).
Then the quotient strings of X and Y are (1/2, 2/1, 1/2)

and (2/4, 4/2, 2/4) respectively, which are the same.
Our algorithm uses T R , P R , T C , P C , T Q , and P Q . We

can construct T R , P R , T C , and P C by scanning T and P ,
and can construct T Q and P Q by scanning T R and P R ,
respectively. All these strings can be constructed in O (n +
m) time using O (n + m) space.

Y. Kim, M. Kang, J.C. Na et al. Information Processing Letters 180 (2023) 106333

Fig. 2. An example of order-preserving pattern matching with scaling.
Our algorithm for the OPPM problem with scaling con-
sists of two steps. Let the center string of P be the sub-
string of P excluding the first P R [0] characters and the
last P R [m′ − 1] characters from P . In Step 1, we search for
the candidate substrings w of T to which P can be scaled
order-isomorphic by considering only the center string of
P . In Step 2, we check if P is scaled order-isomorphic to
each w by considering the characters excluding the center
string of P . The reason why we handle the center string
and the other characters separately is that while the cusps
of the center string of P correspond to the cusps of T ,
the first and last characters of P may not correspond to
any cusp of T . For instance, consider T [8..20] in Fig. 2,
to which P is scaled order-isomorphic. The first character
P [0] and the last character P [6] correspond to T [8] and
T [20], respectively, both of which are not cusps of T .

The detailed algorithm is as follows.

• Step 1: Find every candidate substring w of T to
which P can be scaled order-isomorphic considering
only the center string of P . For each condition of Def-
inition 2, we search every position that satisfies the
condition.
– Finding the set J1 of every position in T R that sat-

isfies Condition 1: We find every position j1 ∈ J1
such that P Q [1..m′ − 3] (the quotient string of the
center string of P) occurs exactly at j1 in T Q and
the scale ratio k = T R [j1]/P R [1] is an integer.
Note that we do not know the scale ratio k which
may be different at each occurrence. Thus, instead of
using T R and P R to search j1, we use the quotient
strings because as mentioned before, if a string is
scaled by an integer k, the ratios between adjacent
run-lengths are conserved regardless of k. That is,
if T R [j1 + � − 1] = kP R [�] (1 ≤ � ≤ m′ − 2) for an
integer k, T Q [j1.. j1 + m′ − 4] = P Q [1..m′ − 3].
4

In the example of Fig. 2 when m′ = 5, the occur-
rences of P Q [1..2] = (1/2, 2/1) are T Q [1..2] (k = 1)

and T Q [7..8] (k = 2), i.e., J1 = {1, 7}.
– Finding the set J2 of every position in T C that sat-

isfies Condition 2: We find every position j2 ∈ J2
such that T C [j2.. j2 + m′ − 2] is order-isomorphic to
P C [1..m′ − 1] (the cusp string of the center string
of P).
In the example of Fig. 2, T C [3..6] and T C [7..10] are
order-isomorphic to P C [1..4], i.e., J2 = {3, 7}.

For each j ∈ J1 ∩ J2, we determine the starting posi-
tion s and ending position e of the candidate substring
w = T [s..e] of T . Obviously, e = s +k(m −1) where k is
the scale ratio T R [j]/P R [1]. Let j′ be the position in T
corresponding to T C [j]. Then j′ = ∑ j−1

q=0 T R [q] as ex-
plained before. Since the scale ratio of the first run of
w to that of P also should be k, s = j′ −kP R [0]. In the
example of Fig. 2, when j = 7, k = T R [7]/P R [1] = 2,
s = ∑6

q=0 T R [q] − 2P R [0] = 10 − 2 = 8, and e = 8 + 2 ×
6 = 20. That is, T [8..20] is a candidate.

• Step 2: Determine whether P is scaled order-isomor-
phic to each candidate w = T [s..e] found in Step 1 or
not, by also considering the first and the last runs of P .
– Verifying if Condition 1 is satisfied for w R and P R :

Check whether T R [j − 1] ≥ kP R [0] and T R [j + m′ −
2] ≥ kP R [m′ − 1].
To verify Condition 1, we should check if

∣∣w R
∣∣ =∣∣P R

∣∣ and w R [i] = kP R [i] (0 ≤ i < m′). Since we al-
ready know that Condition 1 satisfies for P R [1..m′ −
2] by Step 1, the remaining parts to check are P R [0]
and P R [m′ − 1]. The substring of w corresponding
to P R [0] is w[0..r] = T [s..s + r], where r = kP R [0].
Since the length of the run ending at T [s + r] is
T R [j − 1], if T R [j − 1] ≥ r, only one run exists in
T [s..s + r] and w R [0] = kP R [0]. By checking simi-

Y. Kim, M. Kang, J.C. Na et al. Information Processing Letters 180 (2023) 106333
larly for the last run, we can check if Condition 1 is
satisfied.
In the example of Fig. 2, a candidate T [8..20] (j =
7, k = 2, and m′ = 5) satisfies Condition 1, since
T R [6] (= 3) ≥ kP R [0] (= 2) and T R [10] (= 3) ≥
kP R [4] (= 2),

– Verifying if Condition 2 is satisfied for wC and P C :
Check the inequality (1) for the last two characters
in T C [j.. j + m′ − 2] ◦ T [e] ◦ T [s] using the location
tables of P C [1..m′ − 1] ◦ P C [m′] ◦ P C [0].
Since Condition 1 is satisfied, wC = T [s] ◦ T C [j.. j +
m′ − 2] ◦ T [e]. We can verify Condition 2 (wC ≈
P C) by checking if T C [j.. j + m′ − 2] ◦ T [e] ◦ T [s] ≈
P C [1..m′ − 1] ◦ P C [m′] ◦ P C [0] by Corollary 2. Since
T C [j.. j +m′ − 2] ≈ P C [1..m′ − 1] by Step 1, we need
to check the inequality (1) for the remaining char-
acters T [e] and T [s] using the location tables of
P C [1..m′ − 1] ◦ P C [m′] ◦ P C [0].
In the example of Fig. 2, Condition 2 is satisfied
for candidate T [8..20] and P , since the inequal-
ity (1) is satisfied for the last two characters of
T C [j.. j +m′ −2] ◦T [e] ◦T [s] = (41, 17, 35, 24, 29,34)

and P C [1..m′ − 1] ◦ P C [m′] ◦ P C [0] = (40, 23, 37, 28,

30,35).
In the example in Fig. 2, since T [8..20] and P satisfy
both conditions for k = 2, P ∼=2 T [8..20].

Now we analyze the running time of our algorithm.
First, let us consider Step 1. The set J1 can be com-
puted in O (n + m) time using a pattern matching algo-
rithm [13]. Also, the set J2 can be computed in O (n +
m log m) time using an OPPM algorithm [2,3]. In calculat-
ing the starting position s of every candidate w , computing
j′ = ∑ j−1

q=0 T R [q] takes O (n) time in total by processing
every position j in increasing order. Therefore, Step 1 re-
quires O (n +m log m) time in total. In Step 2, after comput-
ing the location tables of P C [1..m′] ◦ P C [0] in O (m log m)

time, for each candidate w we can check Conditions 1 and
2 in O (1) time. Since there are at most n candidates Step 2
requires O (n + m logm) time in total. Therefore, our algo-
rithm takes O (n + m logm) time. Moreover, if we can sort
the characters of P C in linear time, we can compute the
location tables used for checking Condition 2 in Steps 1
and 2 in O (m) time [3]. Therefore, we obtain the following
Theorem 3.

Theorem 3. Given T (|T | = n) and P (|P | = m), the order-
preserving pattern matching problem with scaling can be solved
in O (n + m log m) time. If the characters of P C can be sorted in
linear time, the problem can be solved in O (n + m) time.

5. Conclusion

In this paper we defined the scaled order-isomorphism
for the first time considering only cusps of strings while
ignoring characters between them. Also we presented an
efficient O (n +m log m)-time algorithm for the OPPM prob-
lem with scaling. To apply OPPM to time series data anal-
ysis more effectively, it is necessary to study on diverse
approximation in OPPM, for example, considering inser-

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Acknowledgements

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT) (2020R1F1A1068873 & 2022R1G1A1012473),
and by Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korean Government (MSIT) (2020-0-01389, Artificial Intel-
ligence Convergence Research Center (Inha University) &
No.RS-2022-00155915, Artificial Intelligence Convergence
Innovation Human Resources Development (Inha Univer-
sity)), and by Inha University Research Grant.

References

[1] J. Kim, A. Amir, J.C. Na, K. Park, J.S. Sim, On representations of ternary
order relations in numeric strings, Math. Comput. Sci. 11 (2) (2017)
127–136, https://doi .org /10 .1007 /s11786 -016 -0282 -0.

[2] J. Kim, P. Eades, R. Fleischer, S. Hong, C.S. Iliopoulos, K. Park, S.J.
Puglisi, T. Tokuyama, Order-preserving matching, Theor. Comput. Sci.
525 (2014) 68–79, https://doi .org /10 .1016 /j .tcs .2013 .10 .006.

[3] M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, T. Waleń, A linear
time algorithm for consecutive permutation pattern matching, Inf.
Process. Lett. 113 (12) (2013) 430–433, https://doi .org /10 .1016 /j .ipl .
2013 .03 .015.

[4] T. Chhabra, J. Tarhio, A filtration method for order-preserving match-
ing, Inf. Process. Lett. 116 (2) (2016) 71–74, https://doi .org /10 .1016 /
j .ipl .2015 .10 .005.

[5] S. Cho, J.C. Na, K. Park, J.S. Sim, A fast algorithm for order-preserving
pattern matching, Inf. Process. Lett. 115 (2) (2015) 397–402, https://
doi .org /10 .1016 /j .ipl .2014 .10 .018.

[6] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu,
S.P. Pissis, J. Radoszewski, W. Rytter, T. Waleń, Order-preserving in-
dexing, Theor. Comput. Sci. 638 (2016) 122–135, https://doi .org /10 .
1016 /j .tcs .2015 .06 .050.

[7] P. Gawrychowski, P. Uznański, Order-preserving pattern matching
with k mismatches, Theor. Comput. Sci. 638 (2016) 136–144, https://
doi .org /10 .1016 /j .tcs .2015 .08 .022.

[8] T. Chhabra, E. Giaquinta, J. Tarhio, Filtration algorithms for approx-
imate order-preserving matching, in: C.S. Iliopoulos, S.J. Puglisi, E.
Yilmaz (Eds.), String Processing and Information Retrieval - 22nd
International Symposium, SPIRE 2015, London, UK, September 1-4,
2015, Proceedings, in: Lecture Notes in Computer Science, vol. 9309,
Springer, 2015, pp. 177–187.

[9] A. Amir, G.M. Landau, U. Vishkin, Efficient pattern matching with
scaling, J. Algorithms 13 (1) (1992) 2–32, https://doi .org /10 .1016 /
0196 -6774(92)90003 -U.

[10] A. Amir, A. Butman, M. Lewenstein, Real scaled matching, Inf. Pro-
cess. Lett. 70 (4) (1999) 185–190, https://doi .org /10 .1016 /S0020 -
0190(99)00060 -5.

[11] A. Amir, A. Butman, M. Lewenstein, E. Porat, D. Tsur, Efficient one-
dimensional real scaled matching, J. Discret. Algorithms 5 (2) (2007)
205–211, https://doi .org /10 .1016 /j .jda .2006 .03 .017.

[12] A. Amir, E. Chencinski, Faster two dimensional scaled matching,
in: M. Lewenstein, G. Valiente (Eds.), Combinatorial Pattern Match-
ing, 17th Annual Symposium, CPM 2006, Barcelona, Spain, July 5-7,
2006, Proceedings, in: Lecture Notes in Computer Science, vol. 4009,
Springer, 2006, pp. 200–210.

[13] D.E. Knuth, J.H. Morris Jr., V.R. Pratt, Fast pattern matching in
strings, SIAM J. Comput. 6 (2) (1977) 323–350, https://doi .org /10 .
1137 /0206024.
tions, deletions, overlaps, etc.

5

https://doi.org/10.1007/s11786-016-0282-0
https://doi.org/10.1016/j.tcs.2013.10.006
https://doi.org/10.1016/j.ipl.2013.03.015
https://doi.org/10.1016/j.ipl.2013.03.015
https://doi.org/10.1016/j.ipl.2015.10.005
https://doi.org/10.1016/j.ipl.2015.10.005
https://doi.org/10.1016/j.ipl.2014.10.018
https://doi.org/10.1016/j.ipl.2014.10.018
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1016/j.tcs.2015.08.022
https://doi.org/10.1016/j.tcs.2015.08.022
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibEBBB6518CF733DA1C628B83562016E8Ds1
https://doi.org/10.1016/0196-6774(92)90003-U
https://doi.org/10.1016/0196-6774(92)90003-U
https://doi.org/10.1016/S0020-0190(99)00060-5
https://doi.org/10.1016/S0020-0190(99)00060-5
https://doi.org/10.1016/j.jda.2006.03.017
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibB27288872F8C7A6C8C7121790B935ACEs1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibB27288872F8C7A6C8C7121790B935ACEs1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibB27288872F8C7A6C8C7121790B935ACEs1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibB27288872F8C7A6C8C7121790B935ACEs1
http://refhub.elsevier.com/S0020-0190(22)00090-4/bibB27288872F8C7A6C8C7121790B935ACEs1
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024

	Order-preserving pattern matching with scaling
	1 Introduction
	2 Preliminaries
	3 Scaled order-isomorphism
	4 Algorithm for the OPPM problem with scaling
	5 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

